SDMS Document ID 2118882 2118887 EPA NO. <u>U590002</u> FILE NO. <u>P1-2</u>

DRAFT

SURFACE SOIL ASSESSMENT
Hecla Mining Company - Apex Unit
St. George, Utah

June 7, 1995

Copyright 1995, Kleinfelder, Inc.

Unauthorized use or copying of this document is strictly prohibited. See "Application for Authorization To Use" located in Appendix E of this document if use or copying is desired by anyone other than the Client and for the project identified above.

AMERICANClient: Kleinfelder

WESTDate Sampled: May 23, 1995
ANALYTICAILab Sample ID.: 22631-81
LABORATORIESField Sample ID.: HM052495-31/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995
Received By: Elona Hayward
Set Description: Ninety-Seven Solid
Samples

Analytical Results

163 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	660 ≯
	Barium	6010	0.5	39
	Cadmium	6010	0.2	7.5
(801) 263-8686	Chromium	6010	0.5	7.8
Fax (801) 263-8687	Cobalt	6010	0.5	11
	Copper	6010	0.5	180
	Lead	6010	3.0	84
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	12
	Selenium	7740	0.1	0.2
	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	690

Released by	
-------------	--

AMERICANClient: Kleinfelder

WESTDate Sampled: May 23, 1995 ANALYTICAILab Sample ID.: 22631-60

LABORATORIES ield Sample ID.: HM052495-10/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid Samples

Analytical Results

463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount Detected: mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	2500
	Barium	6010	0.5	60
·	Cadmium	6010	0.2	14
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	380 🔻
	Cobalt	6010	0.5	37
	Copper	6010	0.5	87
	Lead	6010	3.0	20
ł	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	54
	Selenium	7740	0.1	0.1
	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	2500

Released by:

AMERICAN

WESClient: Kleinfelder

ANALYTICADate Sampled: May 23, 1995

LABORATORIELab Sample ID.: 22631-46
Field Sample ID.: HM052395-46/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
84115	Arsenic	7060	0.5	65
	Barium	6010	0.5	23
	Cadmium	6010	0.2	7.5
(801) 263-8686	Chromium	6010	0.5	160 🛪
Fax (801) 263-8687	Cobalt	6010	0.5	53
	Copper	6010	0.5	26
	Lead	6010	3.0	9.1
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	64
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	4200

Released by:

AMERICAN WESElient: Kleinfelder

ANALYTICADate Sampled: May 23, 1995
LABORATORIES Sample ID.: 22631-45
Field Sample ID.: HM052395-45/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995

Received By: Elona Hayward Set Description: Ninety-Seven Solid

Samples

Analytical Results

A	nalytical Acoust	N. 41-43	Detection	Amount
463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	140
	Barium	6010	0.5	33
	Cadmium	6010	0.2	10
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	190 🔻
	Cobalt	6010	0.5	69
	Copper	6010	0.5	40
	Lead	6010	3.0	9.5
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	86
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	0.5
	Zinc	6010	0.5	6400 .

Released by:

AMERICAN

WEStlient: Kleinfelder

ANALYTICADate Sampled: May 23, 1995
LABORATORIÉSE Sample ID.: 22631-69
Field Sample ID.: HM052495-19/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Aı	nalytical Results			A
 463 West 3600 South		Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	890
	Barium	6010	0.5	40
	Cadmium	6010	0.2	50 ×
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	5.9
	Cobalt	6010	0.5	6.4
	Copper	6010	0.5	640
	Lead	6010	3.0	20
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	11
	Selenium	7740	0.1	<0.1
•	Silver	6010	0.5	<0.5
1				

6010

Released by:

Laboratory Supervisor

Zinc

6300

0.5

WESchient: Kleinfelder

ANALYTICADate Sampled: May 23, 1995 LABORATORIE Sab Sample ID.: 22631-37

Field Sample ID.: HM052395-37/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

63 West 3600 South C	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
84115	Arsenic	7060	0.5	61
	Barium	6010	0.5	140
	Cadmium	6010	0.2	1.5
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	16
	Cobalt	6010	0.5	12
	Copper	6010	0.5	130
	Lead	6010	3.0	120
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	18
	Selenium	7740	0.1	0.2
	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	270

Released by:

WESClient: Kleinfelder

ANALYTICA Date Sampled: May 23, 1995
LABORATORIES ab Sample ID.: 22631-33
Field Sample ID.: HM052395-33/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995
Received By: Elona Hayward
Set Description: Ninety-Seven Solid

Samples

Analytical Results

163 West 3600 Soudf(OTAL METALS	Method <u>Used:</u>	Detection <u>Limit:</u> mg/kg	Amount Detected: mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	2500
	Barium	6010	0.5	390
	Cadmium	6010	0.2	47 X
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	15
	Cobalt	6010	0.5	210
	Copper	6010	0.5	8200
	Lead	6010	3.0	6400 🗶
	Mercury	7471	0.1	0.2
	Nickel	6010	0.5	110
	Selenium	7740	0.1	7
	Silver	6010	0.5	21
	Zinc	6010	0.5	7200

Released by:

AMERICAN
WES Client: Kleinfelder
ANALYTICAL Date Sampled: May 23, 1995
LABORATORIE Lab Sample ID.: 22631-32
Field Sample ID.: HM052395-32/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995

Received By: Elona Hayward Set Description: Ninety-Seven Solid

Samples

Analytical Results

463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount Detected: mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	3500 🛪
	Barium	6010	0.5	550
	Cadmium	6010	0.2	80 🖈
(801) 263-8686	Chromium	6010	0.5	21
Fax (801) 263-8687	Cobalt	6010	0.5	220
	Copper	6010	0.5	9700
	Lead	6010	3.0	10000 🖈
	Mercury	7471	0.1	0.2
	Nickel	6010	0.5	170
	Selenium	7740	0.1	1.5
	Silver	6010	0.5	28
	Zinc	6010	0.5	16000

Released by:

AMERICAN

AMERICAN
WES Client: Kleinfelder
ANALYTICA Date Sampled: May 23, 1995
LABORATORIE LABORATO

Contact: Daniel Horns

Date Received: May 25, 1995

Received By: Elona Hayward
Set Description: Ninety-Seven Solid
Samples

Analytical Results

i3 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection <u>Limit:</u> mg/kg	Amount <u>Detected:</u> mg/kg
alt Lake City, Utah 84115	Arsenic	7060	0.5	1400 🖈
	Barium	6010	0.5	210
	Cadmium	6010	0.2	15
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	13
	Cobalt	6010	0.5	190
	Copper	6010	0.5	2200
	Lead	6010	3.0	2500
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	69
	Selenium	7740	0.1	1.9
	Silver	6010	0.5	8.8
	Zinc	6010	0.5	2000

WES Client: Kleinfelder

ANALYTICAD ate Sampled: May 23, 1995
LABORATORIES ab Sample ID.: 22631-30

Field Sample ID.: HM052395-30/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

53 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	110 *
	Barium	6010	0.5	44
	Cadmium	6010	0.2	7.8
(801) 263-8686 Pax (801) 263-8687	Chromium	6010	0.5	25
	Cobalt	6010	0.5	1100
÷ .	Copper	6010	0.5	160
	Lead	6010	3.0	170
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	110
	Selenium	7740	0.1	0.3
	Silver	6010	0.5	3.9
	Zinc	6010	0.5	300

Released by:

AMERICANClient: Kleinfelder WESTDate Sampled: May 23, 1995
ANALYTICALLab Sample ID.: 22631-29
LABORATORIESField Sample ID.: HM052395-29/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid Samples

Analytical Results

T	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
163 West 3600 South Salt Lake City, Utah 84115	Arsenic	7060	0.5	200
01113	Barium	6010	0.5	110
	Cadmium	6010	0.2	19
	Chromium	6010	0.5	21
(801) 263-8686 Fax (801) 263-8687	Cobalt	6010	0.5	900
	Copper	6010	0.5	430
	Lead	6010	3.0	370
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	79
	Selenium	7740	0.1	0.2
	Silver	6010	0.5	4.7
	Zinc	6010	0.5	410

Released by:	KIT		
	Laboratory Supervisor		

AMERICANClient: Kleinfelder

WES Date Sampled: May 23, 1995 ANALYTICAL ab Sample ID.: 22631-27

LABORATORIE Field Sample ID.: HM052395-27/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995
Received By: Elona Hayward
Set Description: Ninety-Seven Solid

Samples

Analytical Results

 Tourst 3600 South	OTAL METALS	Method Used:	Detection Limit: mg/kg	Amount Detected: mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	180 A
	Barium	6010	0.5	94
	Cadmium	6010	0.2	17
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	17
	Cobalt	6010	0.5	290
	Copper	6010	0.5	150
	Lead	6010	3.0	250
,	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	36
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	1.8
	Zinc	6010	0.5	200

Released by:

AMERICANClient: Kleinfelder

WES Date Sampled: May 23, 1995
ANALYTICAL ab Sample ID.: 22631-24
LABORATORIE Field Sample ID.: HM052395-24/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995

Received By: Elona Hayward
Set Description: Ninety-Seven Solid
Samples

Analytical Results

463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount Detected: mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	2700
	Barium	6010	0.5	230
	Cadmium	6010	0.2	43 A
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	15
	Cobalt	6010	0.5	180
	Copper	6010	0.5	8600
	Lead	6010	3.0	9900
	Mercury	7471	0.1	0.2
	Nickel	6010	0.5	100
	Selenium	7740	0.1	2.8
	Silver	6010	0.5	25
	Zinc	6010	0.5	8900

Released	hv.
1/CICa3CU	UY.

AMERICAN Lient: Kleinfelder

WES Date Sampled: May 23, 1995
ANALYTICAL ab Sample ID.: 22631-23
LABORATORIE Field Sample ID.: HM052395-23/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995
Received By: Elona Hayward
Set Description: Ninety-Seven Solid
Samples

Analytical Results

163 West 3600 Sout#C	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount Detected: mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	80
	Barium	6010	0.5	89
	Cadmium	6010	0.2	4
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	11
	Cobalt	6010	0.5	100
	Copper	6010	0.5	87
	Lead	6010	3.0	110
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	20
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	1.2
	Zinc	6010	0.5	97

Released by:

AMERICANClient: Kleinfelder
WES Date Sampled: May 23, 1995
ANALYTICAL ab Sample ID.: 22631-22
LABORATORIE Field Sample ID.: HM052395-22/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995
Received By: Elona Hayward
Set Description: Ninety-Seven Solid

Samples

Analytical Results

3 West 3600 Sout	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
alt Lake City, Utah 84115	Arsenic	7060	0.5	7000
	Barium	6010	0.5	300
	Cadmium	6010	0.2	110 🗡
(801) 263-8686 ax (801) 263-8687	Chromium	6010	0.5	30
	Cobalt	6010	0.5	690
	Copper	6010	0.5	12000
	Lead	6010	3.0	20000
	Mercury	7471	0.1	0.6
	Nickel	6010	0.5	220
	Selenium	7740	0.1	6.4
	Silver	6010	0.5	40
	Zinc	6010	0.5	11000

Released	by:

AMERICA Client: Kleinfelder
WESDate Sampled: May 23, 1995
ANALYTICA Lab Sample ID.: 22631-21
LABORATORIE Field Sample ID.: HM052395-21/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995

Received By: Elona Hayward Set Description: Ninety-Seven Solid

Samples

Analytical Results

463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount Detected: mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	71
	Barium	6010	0.5	91
	Cadmium	6010	0.2	3.6
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	11
	Cobalt	6010	0.5	300
	Copper	6010	0.5	91
	Lead	6010	3.0	160
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	17
ľ	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	0.8
	Zinc	6010	0.5	120

Released by:

AMERICAN Client: Kleinfelder
WES Date Sampled: May 23, 1995
ANALYTICAL Sample ID.: 22631-20
LABORATORIE Field Sample ID.: HM052395-20/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amo <u>Detec</u> mg/l	ted:
Salt Lake City, Utah 84115	Arsenic	7060	0.5	5000	A
	Barium	6010	0.5	620	
	Cadmium	6010	0.2	640	*
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	21	
	Cobalt	6010	0.5	420	
	Copper	6010	0.5	28000	,
	Lead	6010	3.0	13000	*
	Mercury	7471	0.1	2.3	
	Nickel	6010	0.5	260	
	Selenium	7740	0.1	5.3	
	Silver	6010	0.5	36	
	Zinc	6010	0.5	16000	

Released by:

AMERICAN Client: Kleinfelder
WES Date Sampled: May 23, 1995
ANALYTICAL ab Sample ID.: 22631-19
LABORATORIE Field Sample ID.: HM052395-19/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid Samples

Analytical Results

463 West 3600 Soutil C	OTAL METALS .	Method <u>Used:</u>	Detection Limit: mg/kg	Amount Detected: mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	3600
	Barium	6010	0.5	270
	Cadmium	6010	0.2	46 A
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	41
	Cobalt	6010	0.5	1500
	Copper	6010	0.5	.8700
	Lead	6010	3.0	8900 🗡
	Mercury	7471	0.1	1.6
	Nickel	6010	0.5	150
	Selenium	7740	0.1	3.2
	Silver	6010	0.5	33
	Zinc	6010	0.5	9100

Released by:

AMERICAN Client: Kleinfelder
WEST Date Sampled: May 23, 1995
ANALYTICAL Lab Sample ID.: 22631-15
LABORATORIE Field Sample ID.: HM052395-15/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995
Received By: Elona Hayward
Set Description: Ninety-Seven Solid
Samples

Analytical Results

3 West 3600 South	OTAL METALS	Method Used:	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
alt Lake City, Utah 84115	Arsenic	7060	0.5	930 \$
	Barium	6010	0.5	250
	Cadmium	6010	0.2	30
(801) 263-8686 ax (801) 263-8687	Chromium	6010	0.5	15
	Cobalt	. 6010	0.5	250
	Copper	6010	0.5	2700
	Lead	6010	3.0	2300
	Mercury	7471	0.1	0.4
	Nickel	6010	0.5	88
	Selenium	7740	0.1	2
	Silver	6010	0.5	10
	Zinc	6010	0.5	4400

Released	by:	1
	٠,٠	

AMERICAN lient: Kleinfelder
WES Date Sampled: May 23, 1995
ANALYTICAL ab Sample ID.: 22631-14
LABORATORIE Field Sample ID.: HM052395-14/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995
Received By: Elona Hayward
Set Description: Ninety-Seven Solid
Samples

Analytical Results

163 West 3600 South C	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	1200 7
	Barium	6010	0.5	310
Ca (801) 263-8686 Ch Fax (801) 263-8687 Co Co Le	Cadmium	6010	0.2	35
	Chromium	6010	0.5	16
	Cobalt	6010	0.5	280
	Copper	6010	0.5	4400
	Lead	6010	3.0	2500
	Mercury	7471	0.1	0.4
	Nickel	6010	0.5	110
	Selenium	7740	0.1	1.5
	Silver	6010	0.5	9.5
	Zinc	6010	0.5	4900

Released	by:

AMERICAN Lient: Kleinfelder WES Date Sampled: May 23, 1995
ANALYTICAL ab Sample ID.: 22631-13
LABORATORIE Field Sample ID.: HM052395-13/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

463 West 3600 South C	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount Detected: mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	510 🗡
	Barium	6010	0.5	120
(801) 263-8686 Fax (801) 263-8687	Cadmium	6010	0.2	7.7
	Chromium	6010	0.5	10
	Cobalt	6010	0.5	20
	Copper	6010	0.5	4300
	Lead	6010	3.0	980
	Mercury	7471	0.1	0.1
	Nickel	6010	0.5	22
	Selenium	7740	0.1	2
	Silver	6010	0.5	4.5
	Zinc	6010	0.5	1000

AMERICAN Client: Kleinfelder
WEST Date Sampled: May 23, 1995
ANALYTICA Lab Sample ID.: 22631-12
LABORATORIE Field Sample ID.: HM052395-12/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

- <u> </u>	mary creat recours			
463 West 3600 SoutFOTAL METALS		Method Detect <u>Used:</u> Limi mg/k		Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	240
	Barium	6010	0.5	90
	Cadmium	6010	0.2	8.8
(801) 263-8686	Chromium	6010	0.5	12
Fax (801) 263-8687	Cobalt	6010	0.5	57
	Copper	6010	0.5	450
	Lead	6010	3.0	400
•	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	21
	Selenium	7740	0.1	<0.1
.	Silver	6010	0.5	3.3
	Zinc	6010	0.5	580

Released by:

AMERICAN Lient: Kleinfelder

WES Date Sampled: May 23, 1995
ANALYTICAL ab Sample ID.: 22631-11
LABORATORIE Field Sample ID.: HM052395-11/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward Set Description: Ninety-Seven Solid

Samples

Analytical Results

463 West 3600 SoutiTC	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount Detected: mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	200
	Barium	6010	0.5	73
	Cadmium	6010	0.2	75 A
(801) 263-8686	Chromium	6010	0.5	8.2
Fax (801) 263-8687	Cobalt	6010	0.5	72
	Copper	6010	0.5	430
	Lead	6010	3.0	410
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	21
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	5.1
	Zinc	6010	0.5	680

Released by:

AMERICAN lient: Kleinfelder

WEST Client: Kleinfeider
WEST Date Sampled: May 23, 1995
ANALYTICA Lab Sample ID.: 22631-08
LABORATORIE Field Sample ID.: HM052395-08/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward Set Description: Ninety-Seven Solid

Samples

Analytical Results

	inarytical Accounts			
463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	410
	Barium	6010	0.5	85
1	Cadmium	6010	0.2	6
(801) 263-8686	Chromium	6010	0.5	9.6
Fax (801) 263-8687	Cobalt	6010	0.5	46
•	Copper	6010	0.5	630
	Lead	6010	3.0	480
	Mercury	7471	0.1	0.2
	Nickel	6010	0.5	18
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	3.3
•	Zinc	6010	0.5	430

Released by:

AMERICAN lient: Kleinfelder WEST and Samuelade Man

WESTHORIC TRIBUTION AND ANALYTICAL Date Sampled: May 23, 1995

ANALYTICAL Date Sample ID.: 22631-06

LABORATORIES DE Sample ID.: HM052395-06/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid Samples

Analytical Results

163 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg	
Salt Lake City, Utah 84115	Arsenic	7060	0.5	100	
	Barium	6010	0.5	210	
	Cadmium	6010	0.2	9.5	
(801) 263-8686 Chr	Chromium	6010	0.5	11	
	Cobalt	6010	0.5	59	
	Copper	6010	0.5	340	
	Lead	6010	3.0	280	
	Mercury	7471	0.1	<0.1	
	Nickel	6010	0.5	22	
	Selenium	7740	0.1	<0.1	
	Silver	6010	0.5	2.7	
	Zinc	6010	0.5	660	

AMERICAN lient: Kleinfelder

WEST Date Sampled: May 23, 1995
ANALYTICA Date Sample ID.: 22631-05
LABORATORIE Field Sample ID.: HM052395-05/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

	adiy ocur Acourts	Method Used:	Detection Limit:	Amount
463 West 3600 SoutFOTAL METALS		Oseu.	mg/kg	Detected: mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	190
	Barium	6010	0.5	140
	Cadmium	6010	0.2	42
(801) 263-8686	Chromium	6010	0.5	6.6
Fax (801) 263-8687	6010 0.5 80	80		
	Copper	6010	0.5	600
	Lead	6010	3.0	380
I	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	32
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	3.1
	Zinc	6010	0.5	590

AMERICAN WEST lient: Kleinfelder

ANALYTICAD ate Sampled: May 23, 1995
ANALYTICAD ate Sample ID.: 22631-02
LABORATORIES ab Sample ID.: HM052395-02/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995
Received By: Elona Hayward
Set Description: Ninety-Seven Solid

Samples

Analytical Results

163 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection <u>Limit:</u> mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	230
	Barium	6010	0.5	150
1	Cadmium	6010	0.2	14
(801) 263-8686	Chromium	6010	0.5	11
Fax (801) 263-8687	Cobalt	6010	0.5	120
1	Copper	6010	0.5	570
	Lead	6010	3.0	240 🔻
1	Mercury	7471	0.1	<0.1
1	Nickel	6010	0.5	55
	Selenium	7740	0.1	<0.1
1	Silver	6010	0.5	15
	Zinc	6010	0.5	530

Released	hv.

AMERICA Client: Kleinfelder
WESDate Sampled: May 23, 1995
ANALYTICA Lab Sample ID.: 22631-01
LABORATORIE Field Sample ID.: HM052395-01/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995
Received By: Elona Hayward
Set Description: Ninety-Seven Solid
Samples

Analytical Results

i3 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
alt Lake City, Utah 84115	Arsenic	7060	0.5	92
	Barium	6010	0.5	66
(801) 263-8686 ax (801) 263-8687	Cadmium	6010	0.2	7.2
	Chromium	6010	0.5	9.1
	Cobalt	6010	0.5	260
	Copper	6010	0.5	260
	Lead	6010	3.0	170
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	28
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	0.7
	Zinc	6010	0.5	250

- 05/02/00	08:51 FAX 801 538 6715	Div of	Sol Has Waste	Ø 001
			Post-It™ brand fax transmittal r	nemo 7671 # of pages > ス ()
eg a			To Auren Buehler	From Linda Jawasa
		•	Ca. U. S. EPA	
	::		Dept.	Phone # (30.3) 3/ 2-6518
	To: houven	Ru	[302]312-6953	
	From: Linda Jo	_		UTD 982590002
	The state of the s			
	hausen			
	7	d a	nalytical resu	the from the
	Bleinfelder Report			
	have been "storred			
<u> </u>	- Frigger the TCLP			
-	: triggering analyses			10
	also trigger the			
	-		and idea to in	
		· ·		soils into Ponde
	which contined			
	Danged from 10		7000 ppm. 12	ad consentations that
<u> </u>	Breed for	up tr	-	
	that conged up	to 6	240 ppin, Chro	mium Concentrating
	Transcol up to		ppm	
	Thooks	1		
sk W			Quand w	dame
		-		
	:			
		70.	-	
	<u>.</u>			
		عبدان که خان پشینان ایا استخدا	and the second of the second	nd titled to graft a . Any the second term to the s
	.1			**************************************

(29)

4 002

DRAFT

SURFACE SOIL ASSESSMENT
Hecla Mining Company - Apex Unit
St. George, Utah

June 7, 1995

Copyright 1995, Kleinfelder, Inc.

Unauthorized use or copying of this document is strictly prohibited. See "Application for Authorization To Use" located in Appendix E of this document if use or copying is desired by anyone other than the Client and for the project identified above.

AMERICANClient: Kleinfelder WESTDate Sampled: May 23, 1995 ANALYTICAL ab Sample ID.: 22631-81

LABORATORIE Field Sample ID.: HM052495-31/31-6930 60

Contact: Daniel Horns

F 53.20

Date Received: May 25, 1995

Received By: Elona Hayward Set Description: Ninety-Seven Solid

Samples

Analytical Results

<u></u>	mary treat results			
163 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115 (801) 263-8686 Fax (801) 263-8687	Arsenic	7060	0.5	660 ×
	Barium	6010	0.5	39
	Cadmium	6010	0.2	7.5
	Chromium	6010	0.5	7.8
	Cobalt	6010	0.5	11
	Copper	6010	0.5	180
	Lead	6010	3.0	84
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	12
	Selenium	7740	0.1	0.2
	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	690

Released	by:	
	-,.	_

AMERICANClient: Kleinfelder

WESTDate Sampled: May 23, 1995 ANALYTICALLab Sample (D.: 22631-60

LABORATORIESField Sample ID.: HM052495-10/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

	arout recourse			
463 West 3600 South	OTAL METALS	Method Used:	Detection Limit: mg/kg	Amount Detected; mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	2500 *
	Barium	6010	0.5	60
	Cadmium	6010	0.2	14
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	380 🔻
	Cobalt	6010	0.5	37
	Copper	6010	0.5	87
	Lead	6010	3.0	20
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	54
	Selenium	7740	0.1	0.1
•	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	2500
	· ·			

Rcleased by: _

WESClient: Kleinfelder

ANALYTICADate Sampled: May 23, 1995 LABORATORIES ab Sample ID.: 22631-46

Field Sample ID.: HM052395-46/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995
Received By: Elona Hayward
Set Description: Ninety-Seven Solid
Samples

Analytical Results

463 West 3600 South	OTAL METALS	Method Used:	Detection Limit: mg/kg	Amount Detected: mg/kg
84115	Arsenic	7060	0.5	65
	Barium	6010	0.5	23
	Cadmium	6010	0.2	7.5
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	160 🛪
	Cobalt	6010	0.5	53
	Copper	6010	0.5	26
	Lead	6010	3.0	9.1
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	64
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	4200

Released by:

WESClient: Kleinfelder

ANALYTICADate Sampled: May 23, 1995

LABORATORIES ab Sample ID.: 22631-45

Field Sample ID.: HM052395-45/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995

Received By: Elona Hayward Set Description: Ninety-Seven Solid

Samples

Analytical Results

<u> 7%</u>	tally tical Accura			•
463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	140
	Barium	6010	0.5	33
,	Cadmium	6010	0.2	10
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	190 🖈
	Cobalt	6010	0.5	69
	Copper	6010	0.5	40
	Lead	6010	3.0	9.5
ŧ.	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	86
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	0.5
	Zinc	6010	0.5	6400

Released by:

Laboratory Supervisor

Report Date 6/1/95

l of l

08:52 FAX 801 538 6715 05/02/00

INORGANIC ANALYSIS REPORT

WEStient: Kleinfelder

ANALYTICADate Sampled: May 23, 1995
LABORATORIES Sample ID.: 22631-69
Field Sample ID.: HM052495-19/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995

Received By: Elona Hayward
Set Description: Ninety-Seven Solid
Samples

Ατ	nalytical Results			·
463 West 3600 South		Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	890
	Barium	6010	0.5	40
i	Cadmium	6010	0.2	50 ×
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	5.9
	Cobalt	6010	0.5	6.4
	Copper	6010	0.5	640
	Lead	6010	3.0	20
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	11
	Selenium	7740	0.1	<0.1
•	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	6300

Released by:

Laboratory Supervisor

Report Date 6/1/95

l of l

AMERICAN WESchient: Kleinfelder

ANALYTICADate Sampled: May 23, 1995
LABORATORIESab Sample ID.: 22631-37
Field Sample ID.: HM052395-37/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

An	alvti	cal R	lesults
~ ~~~	~~, ~~	~~~ ~	

63 West 3600 South	TAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	61
	Barium	6010	0.5	140
	Cadmium	6010	0.2	1.5
Bari Cad (801) 263-8686 Chro Cob Cop Lea Mer Nic Sele Silv	Chromium	6010	0.5	16
	Cobalt	6010	0.5	12
	Copper	6010	0.5	130
	Lead	6010	3.0	120
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	18
	Selenium	7740	0.1	0.2
	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	270

Released by:

Laboratory Supervisor

Report Date 6/1/95

1 of 1

AMERICAN
WES Client: Kleinfelder
ANALYTICA Date Sampled: May 23, 1995
LABORATORIES ab Sample ID.: 22631-33
Field Sample ID.: HM052395-33/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995

Received By: Elona Hayward
Set Description: Ninety-Seven Solid
Samples

Analytical Results

	may treat accounts	Method	Detection	Amount
	OTAL METALS	<u>Used:</u>	Limit: mg/kg	Detected: mg/kg
Sall Lake City, Otan 84115	Arsenic	7060	0.5	2500
	Barium	6010	0.5	390
·	Cadmium	6010	0.2	47 X
163 West 3600 SoudTOTA Salt Lake City, Utah 84115 A B C (801) 263-8686 C Fax (801) 263-8687 C C	Chromium	6010	0.5	15
	Cobalt	6010	0.5	210
	Copper	6010	0.5	8200
	Lead	6010	3.0	6400 🗶
	Mercury	7471	0.1	0.2
	Nickel	6010	0.5	110
	Selenium	7740	0.1	7
•	Silver	6010	0.5	21
	Zinc	6010	0.5	7200

Released by:

05/02/00

INORGANIC ANALYSIS REPORT

08:53 FAX 801 538 6715

AMERICAN
WES Client: Kleinfelder
WES Client: Kleinfelder
ANALYTICAD Sampled: May 23, 1995
LABORATORIE Lab Sample ID.: 22631-32
Field Sample ID.: HM052395-32/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995

Received By: Elona Hayward Set Description: Ninety-Seven Solid

Samples

Ai	nalytical Results			·
463 West 3600 South		Method <u>Used:</u>	Detection <u>Limit:</u> mg/kg	Amount Detected: mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	3500 ¥
ć	Barium	6010	0.5	550
	Cadmium ·	6010	0.2	80 🛪
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	21
	Cobalt	6010	0.5	220
	Copper	6010	0.5	9700
	Lead	6010	3.0	10000 🖈
	Mercury	7 471	0.1	0.2
	Nickel	6010	0.5	170
	Selenium	7740	0.1	1.5
	Silver	6010	0.5	28
	Zinc	6010	0.5	16000

Released by:

WES Elient: Kleinfelder

ANALYTICA Date Sampled: May 23, 1995
LABORATORIE LABOR

Contact: Daniel Horns

Date Received: May 25, 1995

Received By: Elona Hayward
Set Description: Ninety-Seven Solid
Samples

Analytical Results

i3 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount Detected: mg/kg
alt Lake City, Utah 84115	Arsenic	7060	0.5	1400 🖈
	Barium	6010	0.5	210
	Cadmium	6010	0.2	15
(801) 263-8686 ⁷ ax (801) 263-8687	Chromium	6010	0,5	13 ·
	Cobalt	6010	0.5	190
	Copper	6010	0.5	2200
	Lead	6010	3.0	2500
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	69
	Selenium	7740	0.1	1.9
• • ,	Silver	6010	0.5	8.8
	Zinc	6010	0.5	2000

Released by:

AMERICAN
WES Client: Kleinfelder
WES Client: Kleinfelder
ANALYTICAD Date Sampled: May 23, 1995
ANALYTICAD Sample ID.: 22631-30
ABORATORIE Lab Sample ID.: HM052395-30/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

A	nalytical Results			·
53 West 3600 Sout[[(OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
lalt Lake City, Utah 84115	Arsenic	7060	0.5	110 🗡
	Barium	6010	0.5	44
	Cadmium	6010	0.2	7.8
(801) 263-8686 Ch Fax (801) 263-8687 Cc	Chromium	6010	0.5	25
	Cobalt	6010	0.5	1100
	Copper	6010	0.5	160
	Lead	6010	3.0	170
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	110
	Selenium	7740	0.1	0.3
	Silver	6010	0.5	3.9
	Zinc	6010	0.5	300

Released by:

Ø 013

INORGANIC ANALYSIS REPORT

AMERICANClient: Kleinfelder WESTDate Sampled: May 23, 1995 ANALYTICALLab Sample ID.: 22631-29

LABORATORIESField Sample ID.: HM052395-29/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

T	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Defected:</u> mg/kg
163 West 3600 South Salt Lake City, Utah 84115	Arsenic	7060	0.5	200 🛪
04113	Barium	6010	0.5	110
	Cadmium	6010	0.2	19
	Chromium	6010	0.5	21
(801) 263-8686 Fax (801) 263-8687	Cobalt	6010	0.5	900
	Copper	6010	0.5	430
	Lead	6010	3.0	370
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	79
	Selenium	7740	0.1	0.2
	Silver	6010	0.5	4.7
•	Zinc	6010	0.5	410

Released by:

Laboratory Supervisor

Report Date 6/1/95

1 of 1

AMERICANClient: Kleinfelder

WES Date Sampled: May 23, 1995 ANALYTICAL ab Sample ID.: 22631-27

LABORATORIE Field Sample ID.: HM052395-27/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

163 West 3600 South	OTAL METALS	Method Used:	Detection Limit: mg/kg	Amount Detected: mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	180 🛪
	Barium	6010	0.5	94
	Cadmium	6010	0.2	17
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	17
	Cobalt	6010	0.5	290
	Copper	6010	0.5	150
	Lead	6010	3.0	250
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	36
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	1.8
	Zinc	6010	0.5	200

Released by-

AMERICANCLIENT: Kleinfelder

- WES Date Sampled: May 23, 1995
ANALYTICAL ab Sample ID.: 22631-24
LABORATORIE Field Sample ID.: HM052395-24/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

AL.	naiyucai Nesuns			·
 463 West 3600 Soud	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	2700
	Barium	6010	0.5	230
	Cadmium	6010	0.2	43 \$
(801) 263-8686 Fax (801) 263-8687 Co	Chromium	6010	0.5	15
	Cobalt	6010	0.5	180
	Copper	6010	0.5	8600
	Lead	6010	3.0	9900
	Mercury	7471	0.1	0.2
	Nickel	6010	0.5	100
	Selenium	7740	0.1	2.8
	Silver	6010	0.5	25
	Zinc	6010	0.5	8900

Released by:

AMERICAN Lient: Kleinfelder

WES Date Sampled: May 23, 1995
ANALYTICAL ab Sample ID.: 22631-23
LABORATORIE Field Sample ID.: HM052395-23/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

	1442) 1.041 1400410	Method Used:	Detection Limit:	Amount Detected:
163 West 3600 SoutTOTAL METALS		<u> XANOU</u>	mg/kg	mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	80
	Barium	6010	0.5	89
	Cadmium	6010	0.2	4
(801) 263-8686	Chromium	6010	0.5	11
Fax (801) 263-8687	Cobalt	6010	0.5	100
	Copper	6010	0.5	87
	Lead	6010	3.0	110
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	20
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	1.2
	Zinc	6010	0.5	97

Released by:

AMERICAlClient: Kleinfelder
WES Date Sampled: May 23, 1995
ANALYTICAL ab Sample ID.: 22631-22
LABORATORIE Field Sample ID.: HM052395-22/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995

Received By: Elona Hayward Set Description: Ninety-Seven Solid

Samples

Analytical Results

3 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
alt Lake City, Utah 84115	Arsenic	7060	0.5	7000
•	Barium	6010	0.5	300
	Cadmium	6010	0.2	110 🗡
(801) 263-8686	Chromium	6010	0.5	30
ax (801) 263-8687	Cobalt	6010	0.5	690
	Copper	6010	0.5	12000
	Lead	60.10	3.0	20000 🛪
	Mercury	7471	0.1	0.6
	Nickel	6010	0.5	220
	Selenium	7740	0.1	6.4
	Silver	6010	0.5	40
•	Zinc	6010	0.5	11000

Released by:

AMERICAMient: Kleinfelder

WESDate Sampled: May 23, 1995
ANALYTICAL ab Sample ID.: 22631-21
LABORATORIE ield Sample ID.: HM052395-21/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Ana	alytic	al R	esul	ts

463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	71
	Barium	6010	0.5	91
	Cadmium	6010	0.2	3.6
(801) 263-8686	Chromium	6010	0.5	11
Fax (801) 263-8687	Cobalt	6010	0.5	300
	Copper	6010	0.5	91
	Lead	6010	3.0	160
	Mercury	7 47 l	0.1	<0.1
	Nickel	6010	0.5	17
	Selenium	7740	0.1	<0.1
7	Silver	6010	0.5	0.8
	Zinc	6010	0.5	120

Laboratory Supervisor

Report Date 6/1/95

1 of 1

AMERICANClient: Kleinfelder

WES Date Sampled: May 23, 1995
ANALYTICAL ab Sample ID.: 22631-20
LABORATORIE Field Sample ID.: HM052395-20/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

	Traily treat INCSUITS		•	•
463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
84115	Arsenic	7060	0.5	5000
	Barium	6010	0.5	620
-	Cadmium	6010	0.2	640 A
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	21
	Cobalt	6010	0.5	420
	Copper	6010	0.5	28000
	Lead	6010	3.0	13000
	Mercury	7471	0.1	2.3
	Nickel	6010	0.5	260
	Selenium	7740	0.1	5.3
	Silver	6010	0.5	36
	Zinc	6010	0.5	16000

Report Date 6/1/95

I of 1

AMERICANCLIENT: Kleinfelder WES Date Sampled: May 23, 1995
ANALYTICAL ab Sample ID.: 22631-19
LABORATORIE Field Sample ID.: HM052395-19/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995

Received By: Elona Hayward Set Description: Ninety-Seven Solid

Samples

A	nalytical Results			·	
463 West 3600 South		Method Used:	Detection <u>Limit</u> : mg/kg	Amount <u>Detected;</u> mg/kg	
Salt Lake City, Utah 84115	Arsenic	7060	0.5	3600	
	Barium	6010	0.5	270	
	Cadmium	6010	0.2	46 A	
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	41	
	Cobalt	6010	0.5	1500	
	Соррег	6010	0.5	8700	
	Lead	6010	3.0	8900 🗡	
	Mercury	7471	0.1	1.6	
	Nickel	6010	0.5	150	
	Selenium	7740	0.1	3.2	
	Silver	6010	0.5	33	
	Zinc	6010	0.5	9100	

Released by:

AMERICAN lient: Kleinfelder

WES Date Sampled: May 23, 1995
ANALYTICAL Lab Sample ID.: 22631-15
LABORATORIE Field Sample ID.: HM052395-15/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

		Method Used:	Detection Limit:	Amount Detected:
3 West 3600 South	OTAL METALS		mg/kg	mg/kg
alt Lake City, Utah 84115	Arsenic	7060	0.5	930 🔻
	Barium	6010	0.5	250
	Cadmium	6010	0.2	30
(801) 263-8686	Chromium	6010	0.5	15
	Cobalt	6010	0.5	250
	Copper	6010	0.5	2700
	Lead	6010	3.0	2300
	Mercury	7471	0.1	0.4
•	Nickel	6010	0.5	88
	Selenium	7740	0.1	2
	Silver	6010	0.5	10
	Zinc	6010	0.5	4400

Rel	eascd	bv:

AMERICAN lient: Kleinfelder

WES Date Sampled: May 23, 1995
ANALYTICAL ab Sample ID.: 22631-14

LABORATORIE Field Sample ID.: HM052395-14/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995

Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

163 West 3600 South C	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount Detected: mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	1200 7
	Barium	6010	0.5	310
	Cadmium	6010	0.2	35
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	16
	Cobalt	6010	0.5	280
	Copper	6010	0.5	4400
•	Lead	6010	3.0	, 2500
	Mercury	7471	0.1	0.4
v	Nickel	6010	0.5	110
•	Selenium	7740	0.1	1.5
	Silver	6010	0.5	9.5
	Zinc	6010	0.5	4900

Released by:

AMERICAN Lient: Kleinfelder
WEST Date Sampled: May 23, 1995
ANALYTICAL ab Sample ID.: 22631-13
LABORATORIE Field Sample ID.: HM052395-13/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995

Received By: Elona Hayward Set Description: Ninety-Seven Solid

Samples

Analytical Results

<u>cted:</u> /kg
X
1
j
A
l
5

Released by:

AMERICAN lient: Kleinfelder

WES Date Sampled: May 23, 1995
ANALYTICAL ab Sample ID.: 22631-12

LABORATORIE Field Sample ID.: HM052395-12/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

<u> </u>	naly acai Acsums			
463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	240
	Barium	6010	0.5	90
i	Cadmium	6010	0.2	8.8
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	12
	Cobalt	6010	0.5	57
	Copper	6010	0.5	450
	Lead	6010	3.0	400
·	Mercury	7471	0.1	<0.1
l	Nickel	6010	0.5	21
i	Selenium	7740	0.1	<0.1
•	Silver	6010	0.5	3.3
Į	Zinc	6010	0.5	580

Released by:

Laboratory Supervisor

Report Date 6/1/95

" 1 of 1

AMERICAN lient: Kleinfelder

WES Date Sampled: May 23, 1995
ANALYTICAL ab Sample ID.: 22631-11
LABORATORIE Field Sample ID.: HM052395-11/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995

Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

463 West 3600 South C	OTAL METALS	Method Used:	Detection Limit: mg/kg	Amount Detected: mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	200
	Barium	6010	0.5	73
	Cadmium	6010	0.2	75 A
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	8.2
	Cobalt	6010	0.5	72
	Copper	6010	0.5	430
ı	Lead	6010	3.0	410
,	Mercury	7471	0.1	<0.1
,	Nickel	6010	0.5	21
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	5.1
	Zinc	6010	0.5	680

Released by:

AMERICAN Lient: Kleinfelder

WEST Date Sampled: May 23, 1995
ANALYTICA Date Sample ID.: 22631-08
LABORATORIES Della Sample ID.: HM052395-08/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount Detected: mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	410
	Barium	6010	0.5	85
1	Cadmium	6010	0.2	6
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	9.6
	Cobalt	6010	0.5	46
	Copper	6010	0.5	630
	Lead	6010	3.0	480
N	Метсигу	7471	0.1	0.2
	Nickel	6010	0.5	18
•	Selenium	7740	0.1	<0.1
•	Silver	6010	0.5	3.3
	Zinc	6010	0.5	430

Released by:

AMERICAN
WEST lient: Kleinfelder
WEST lient: Kleinfelder
ANALYTICAL Sampled: May 23, 1995
ANALYTICAL Sample ID.: 22631-06
LABORATORIES Sample ID.: HM052395-06/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995

Received By: Elona Hayward Set Description: Ninety-Seven Solid

Samples

Analytical Results

163 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount Detected: mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	100
	Barium	6010	0.5	210
	Cadmium	6010	0.2	9.5
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	11
	Cobalt	6010	0.5	59
	Copper	6010	0.5	340
	Lead	6010	3.0	280
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	22
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	2.7
	Zinc	6010	0.5	660

Released by:

AMERICAN
WEST lient: Kleinfelder
WEST Date Sampled: May 23, 1995
ANALYTICA ab Sample ID.: 22631-05
LABORATORIE Field Sample ID.: HM052395-05/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995

Received By: Elona Hayward Set Description: Ninery-Seven Solid

Samples

Analytical Results

	italy block Acousti	Method	Detection	Amount
463 West 3600 SoutTOTAL METALS		<u>Used:</u>	Limit: mg/kg	Detected: mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	190
	Barium	6010	0.5	140
I	Cadmium	6010	0.2	42
(801) 263-8686	Chromium	6010	0.5	6.6
Fax (801) 263-8687	Cobalt	6010	0.5	80
.	Соррег	6010	0.5	600
	Lead	6010	3.0	380
ř	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	32
ł	Selenium	7740	0.1	<0.1
=	Silver	6010	0.5	3.1
.	Zinc	6010	0.5	590

Released by:

Laboratory Supervisor

Report Date 6/1/95

lofl

AMERICAN
WES Client: Kleinfelder
WES Client: Kleinfelder
ANALYTICA Date Sampled: May 23, 1995
LABORATORIE LABORATO

Field Sample ID.: HM052395-02/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninery-Seven Solid

Samples

Analytical Results

63 West 3600 Souts C	OTAL METALS	Method Used:	Detection Limit: mg/kg	Amount Detected: mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	230 A
(801) 263-8686 Fax (801) 263-8687	Barium	6010	0.5	150
	Cadmium	6010	0.2	14
	Chromium	6010	0.5	11
	Cobalt	6010	0.5	120
	Copper	6010	0.5	570
	Lead	6010	3.0	240 🐴
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	55·
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	15
	Zinc	6010	0.5	530

Released by: